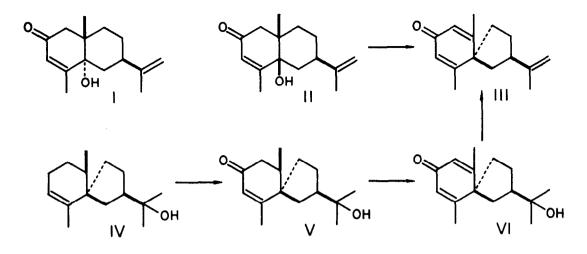
STRUCTURE OF *a*-ROTUNOL AND *β*-ROTUNOL

H. Hikino, K. Aota, D. Kuwano, and T. Takemoto

Pharmaceutical Institute, Tohoku University, Sendai, Japan.


(Received in Japan 14 May 1969; received in UK for publication 5 June 1969)

The present communication deals with evidence for the stereostructures (I and II) of two new sesquiterpenic keto-alcohols α -rotunol and β -rotunol which have been recently isolated from the tuber of nutgrass, Cyperus rotundus Linné (Cyperaceae), of Japanese origin.

 β -Rotunol, $C_{15}H_{22}O_2$, m.p. 118-119°, is shown by its spectral properties to have a tertiary methyl (1.15 ppm (3H)), an isopropenyl (890 cm⁻¹, 1.74 (3H), 4.75 ppm (2H)), a β -methyl- β -substituted α , β -unsaturated ketone in a six-membered or larger ring (232 nm (log ϵ 4.11), 1640 cm⁻¹, 1.99 (3H), 5.89 ppm (1H)), and a tertiary hydroxyl (3450 cm⁻¹). β -Rotunol was treated with phosphorus oxychloride in pyridine to give a dehydration product which was shown by its spectral properties to have a β , β '-dimethyl cross-conjugated dienone (1660, 1630 cm⁻¹, 2.04 (6H), 5.84 ppm (2H)) and an isopropenyl (890 cm⁻¹, 1.77 (3H), 4.71 ppm (2H)). Based on the above facts, we formulated the dehydration product as III and, consequently, β -rotunol as II, the location of the isopropenyl being tentatively assigned on the assumption that β -rotunol follows the isopreme rule.

To prepare the dienone (III), hinesol $(IV)^{1,2}$ was oxidized with <u>t</u>-butyl chromate to give the enone (V) which on oxidation with 2,3-dichloro-5,6-dicyano-benzoquinone afforded the dienone (VI). On treatment with phosphorus oxychloride in pyridine the hydroxy-dienone (VI) gave a mixture of the isopropenyl and isopropylidene derivatives. The former was identified as the dienone (III), establishing the stereostructure of β -rotunol except the configuration at the ring junction.

Mechanistic considerations of the rearrangement of β -rotunol to the diemone (III) indicate that the C-5 hydroxyl and the C-10 methyl are β -<u>cis</u>. This was further confirmed by the CD curve of β -rotunol which shows a negative Cotton effect for the n- π^* transition ([θ]₃₃₄ -4560) being almost identical with that of the reference substance, 5 β -spirost-3-en-2-one³). It is worthy to note that the CD curve exhibits a positive Cotton effect for the π - π^* transition ([θ]₂₃₆ +51200) whose sign is opposite to that of the reference substance, the reversion being due to the hydroxyl function at the γ -position of the α , β -unsaturated ketone³.

On the basis of the above evidence, β -rotunol is concluded to have the stereostructure II. α -Rotunol, $C_{15}H_{22}O_2$, m.p. 67.5-68.5°, is also shown by its spectral properties to possess the same structural features as β -rotunol, a tertiary methyl (1.04 ppm (3H)), an isopropenyl (891 cm⁻¹, 1.76 (3H), 4.77 ppm (2H)), a β -methyl- β -substituted α , β -unsaturated ketone in a six-membered or larger ring (235 nm (log ϵ 4.03), 1663, 1623 cm⁻¹, 1.95 (3H), 5.63 ppm (1H)), and a tertiary hydroxyl (3450 cm⁻¹). The mass spectrum of α -rotunol is also identical with that of β -rotunol but there are differences in the intensities in certain peaks, indicating that both the ketols have the same gross structure. The stereochemistry of α -rotunol was shown by its CD curve exhibiting a negative Cotton effect for the n- π^* transition ([θ]₃₆₁ -530) which is essentially superimposable, including the fine structure, on that of the reference substance, 17 β -acetoxy-5 α androst-3-en-2-one³. The change in sign of the Cotton effect for the π - π^* transition due to the difference of the γ -functions was again observed in α -rotunol and the reference substance.

The above evidence leads to the conclusion that α -rotunol is represented by stereoformula I.

We thank Dr. K. Kuriyama, Shionogi Research Laboratory, for helpful advice on the CD curves.

REFERENCES

- 1) J. A. Marshall and P. C. Johnson, J. Amer. Chem. Soc., 89, 2750 (1967).
- 2) T. Kimura and I. Yosioka, Chem. Pharm. Bull. (Tokyo), in press.

3) K. Kuriyama, personal communication.